Role of astroglia in Down’s syndrome revealed by patient-derived human-induced pluripotent stem cells

نویسندگان

  • Chen Chen
  • Peng Jiang
  • Haipeng Xue
  • Suzanne E. Peterson
  • Ha T. Tran
  • Anna E. McCann
  • Mana M. Parast
  • Shenglan Li
  • David E. Pleasure
  • Louise C. Laurent
  • Jeanne F. Loring
  • Ying Liu
  • Wenbin Deng
چکیده

Down's syndrome (DS), caused by trisomy of human chromosome 21, is the most common genetic cause of intellectual disability. Here we use induced pluripotent stem cells (iPSCs) derived from DS patients to identify a role for astrocytes in DS pathogenesis. DS astroglia exhibit higher levels of reactive oxygen species and lower levels of synaptogenic molecules. Astrocyte-conditioned medium collected from DS astroglia causes toxicity to neurons, and fails to promote neuronal ion channel maturation and synapse formation. Transplantation studies show that DS astroglia do not promote neurogenesis of endogenous neural stem cells in vivo. We also observed abnormal gene expression profiles from DS astroglia. Finally, we show that the FDA-approved antibiotic drug, minocycline, partially corrects the pathological phenotypes of DS astroglia by specifically modulating the expression of S100B, GFAP, inducible nitric oxide synthase, and thrombospondins 1 and 2 in DS astroglia. Our studies shed light on the pathogenesis and possible treatment of DS by targeting astrocytes with a clinically available drug.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and Characterization of Human Induced Pluripotent Stem Cells-Derived Mesenchymal Progenitors

Purpose: Isolating human induced pluripotent stem cells (hiPS)-derived mesenchymal progenitors as a new source of mesenchymal cells which can differentiate into different lineages like adipose and bone. Materials and Methods: After 7 days of hiPS1 culture on matrigle coated dishes, spindle like cells around colonies were removed by cell scraper. These cells that had mesenchymal like morphology ...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

Establishing iPSCs as a method to model neurodevelopment in Down’s syndrome

The derivation of pluripotent stem cells (now termed induced pluripotent stem cells, iPSC) from mature somatic cells was a finding of seminal importance to fundamental cell biology. Being pluripotent (able to differentiate into every cell type present in the adult animal body) and sharing most other characteristics with embryonic stem cells, but being much readier obtainable and their derivatio...

متن کامل

P-50: Elongating and Elongated Spermatids Manufactured In Vitro from Non-Human Primate Pluripotent Stem Cells

Background: We have recently shown that human embryonic (hESCs) and induced pluripotent stem cells (hiPSCs) can differentiate into advanced spermatogenic cells including round spermatids by in vitro culture (Easley et al., Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Reports 2, 440-446 2012) and also, in collaboration, that rhesus spermatogonial ...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014